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The fusiform face area (FFA) is a region of human cortex that
responds selectively to faces, but whether it supports a more general
function relevant for perceptual expertise is debated. Although
both faces and objects of expertise engage many brain areas, the
FFA remains the focus of the strongest modular claims and the
clearest predictions about expertise. Functional MRI studies at
standard-resolution (SR-fMRI) have found responses in the FFA for
nonface objects of expertise, but high-resolution fMRI (HR-fMRI)
in the FFA [Grill-Spector K, et al. (2006) Nat Neurosci 9:1177–1185]
and neurophysiology in face patches in the monkey brain [Tsao
DY, et al. (2006) Science 311:670–674] reveal no reliable selectivity
for objects. It is thus possible that FFA responses to objects with
SR-fMRI are a result of spatial blurring of responses from nonface-
selective areas, potentially driven by attention to objects of expertise.
Using HR-fMRI in two experiments, we provide evidence of reliable
responses to cars in the FFA that correlate with behavioral car ex-
pertise. Effects of expertise in the FFA for nonface objects cannot
be attributed to spatial blurring beyond the scale at which modular
claims have been made, and within the lateral fusiform gyrus, they
are restricted to a small area (200 mm2 on the right and 50 mm2 on
the left) centered on the peak of face selectivity. Experience with
a category may be sufficient to explain the spatially clustered face
selectivity observed in this region.

neural selectivity | object recognition | individual differences |
response reliability | ventral temporal cortex

Category-selective responses in the visual system are found for
several categories, including faces, limbs, scenes, words, let-

ters, and even musical notation (1–5). However, a plausible ar-
gument can be made for a genetically determined brain system
specialized for the representation of faces (6), which includes
the fusiform face area (FFA). One of the strongest arguments
for modularity of face perception is domain-specificity of FFA
responses (4). However, some studies suggest that the FFA also
responds to nonface objects of expertise (7–11), supporting a more
general account of specialization for faces according to which the
FFA is part of the network tuned by experience individuating
visually similar objects. However, recent work at high-resolution
(HR) (12–13) raises the possibility that all expertise effects for
nonface objects are a result of blurring from nonface-selective
regions bordering the true FFA. Because expertise studies have
only used standard-resolution (SR) functional MRI (fMRI) (8–11,
14, 15) and HR-fMRI studies have not measured expertise (12,
16), we fill a hole in the literature by investigating expertise
effects with HR-fMRI.
The FFA is thought to support individuation of faces in con-

cert with other face-selective areas, including the occipital face
area (OFA), part of the superior temporal sulcus (STS), and an
anterior temporal lobe area (aIT) (17, 18). Similarly, expertise
individuating objects recruits a distributed network. In the first
fMRI expertise study (8), training with novel objects recruited
right FFA, right OFA, and right aIT. In experts with familiar

objects, expertise recruited right FFA, right OFA, a small part
of the parahippocampal gyrus bilaterally, and a small focus in
left aIT (9, 11). One study reported an even more extensive brain
network engaged by car experts attending to cars, including V1,
parts of the OFA and FFA, and nonvisual areas (14). (The spatial
extent of these effects may have been overestimated because of
low-level stimulus differences, because even car novices showed
significantly more activity to cars than control stimuli in early
visual areas. In addition, the correlation with expertise was not
tested, making it difficult to assess how much variance was
accounted for by expertise in different areas.)
Given that faces and objects of expertise both recruit multiple

areas, why is there so much focus on the FFA? The FFA occu-
pies a special position on both sides of this theoretical debate.
On the modular side, HR-fMRI reveals that only faces elicit a
reliable selective response in the FFA (12, 16, 19). Neurophysi-
ology in the monkey reveals face patches consisting almost solely
of face-selective neurons (13). Based on such near-absolute se-
lectivity for faces, authors have concluded against the role of
expertise in understanding FFA function (20–23). Thus, FFA
responses to objects obtained with SR-fMRI in novices or experts
are sometimes attributed to spatial blurring. On the other side of
the argument, although perceptual expertise in any domain likely
engages a distinct set of processes, one of them, holistic processing
[the tendency to process all parts of an object at once (24–26)],
has been linked specifically to the FFA. During expertise train-
ing, increases in holistic processing correlate with activity in or
very near the FFA (8, 27). The FFA has been predicted to be
involved in those cases of expertise where individuation depends
on holistic processing, as in car expertise (28). Therefore, as the
focus of the strongest claims for modularity and the clearest pre-
dictions about expertise, FFA responses to objects of expertise are
critical in evaluating whether face perception is, as recently put by
Kanwisher, a “cognitive function with its own private piece of real
estate in the brain” (23).
Our first goal was to assess whether car expertise effects that have

been reported in the SR-FFA arise from face-selective voxels,
nonselective voxels, or both.Our second goal was to characterize the
spatial extent of expertise effects relative to the FFA clusters of
activity. A tight spatial overlap of the activations for faces and
objects of expertise in the FFA would be inconsistent with the idea
that increased attention to objects of expertise results in increased
activity in both face-selective and nonselective areas of the extras-
triate cortex (14). Although objects of expertise (like faces) may
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plausibly attract attention, this could not explain the clustering of
expertise effects for objects specifically near face-selectivity.
Here, we reveal the fine-grained spatial organization of ex-

pertise effects within and around the SR-FFA using HR-fMRI.
First, we replicate the finding that SR-FFA includes voxels that
are sensitive to face and others that are nonsensitive. Second, we
show that car expertise effects are obtained not only in non-
selective voxels but also in themost face selective voxels within the
FFA. Third, we find that expertise effects are spatially limited
within the fusiform gyrus (FG) to the patch observed for face-
selectivity. Fourth, this overlap of object expertise effects with
face-selective responses is found in the context of similar patterns
of activity at a coarser scale within extrastriate areas.

Results
Defining the Classic SR-FFA Effects in Subjects Varying in Car
Expertise. We measured responses to images of different cate-
gories with HR-fMRI at 7 Tesla in 25 adults recruited to vary in
self-reported car expertise. Perceptual expertise was behaviorally
quantified outside the scanner in a sequential matching task with
cars (9). Thirteen subjects claimed expertise with cars and out-
performed the others on car matching (mean d′ car experts = 2.15,
SD = 0.72; car novices = 1.40, SD = 0.51). We used SR-fMRI (2.2
× 2.2 × 2.5 mm) to localize several bilateral regions of interest
(ROIs) (Table S1). In addition to defining the FFA as a single
area, as has been the standard for the last 15 y, we also defined
posterior (FFA1) and anterior (FFA2) portions of the FFA, as
recently proposed (21, 29). Of the subjects, 11 of 20 and 14 of
21 had two clear foci corresponding to these regions in the
right and left hemispheres, respectively, and for another four
(right) and three (left), a single FFA region was large enough
to bisect into two FFA parcels (30). We also defined another
object-selective area in the medial FG (medFG) (Table S1)
found in our HR-slices and where effects of expertise have
also been reported (9). While scanning with 24 HR-fMRI
slices (1.25-mm isometric voxels), we measured responses to
faces, animals, cars, planes, and scrambled matrices (Fig. S1)
during a one-back identity-discrimination task (12, 16).

Replicating Prior Cross-Validation Selectivity for Faces.We performed
HR-analyses of selectivity for each object category without spatial
smoothing and regardless of expertise (12). HR-voxels within
SR-FFA were sorted based on maximum response in half of
the dataset. Putative face-selective voxels were often interdigitated
among putative object-selective voxels (Fig. 1A). We assessed the

reliability of the responses to different categories with two dif-
ferent indices, using cross-validation in both cases. First, in each
voxel type we measured the response to each category relative to
a scrambled baseline using the other half of the dataset (Fig. 1B)
(12). Voxels that initially responded most to faces showed stronger
responses to faces than other categories (F1,19 = 87.73, P < 0.0001).
Voxels that initially responded most to animals responded equally
to faces and animals relative to objects (F1,19 = 41.93, P < 0.0001).
In line with prior work, putative car or plane voxels showed no
category preference (cars: F1,19 = 0.001, not significant, ns; planes:
F1,19 = 2.19, ns) (Fig. 1B, and Figs. S2 and S3). The same results
can be illustrated relative to an animal baseline, which we use in
later analyses as a high-level baseline (Fig. 1C). We also adopted
an index sometimes called d′ (12, 29) but more aptly called da (see
Methods) (31) to measure neural sensitivity relative to all non-
preferred categories. Again, we found reliable sensitivity for faces
in the putative face-sensitive voxels (t = 7.90, P < 0.0001) and for
animals in the putative animal sensitive voxels (t = 3.91, P = 0.001),
but no reliable preference emerged for the putative car (t = 1.39,
ns) or plane voxels (t = 0.73, ns). Thus, both measures replicate
prior results that—when expertise is not considered—the SR-FFA
includes HR-voxels that respond more to objects than to scram-
bled images but show no reliable preferences for nonface-object
categories. Based on these results, we performed most analyses
within three subpopulations of voxels: face-sensitive, animal-sen-
sitive, and nonsensitive voxels (broken down into car-sensitive and
plane-sensitive in Tables S2 and S3, also for other ROIs).

Sensitivity of HR-Voxels for Cars Increases with Expertise in the FFA.
We examined the fine-scale organization of expertise effects in
the FFA as a single ROI, and in FFA1 and FFA2. Using cross-
validation, we found that car expertise predicted neural sensitivity
to cars relative to animals (SI Text) in HR-voxels regardless of the
definition of FFA (Fig. 2A). Importantly, not only nonsensitive
voxels, but even highly selective face voxels showed an increased
response to cars relative to animals with expertise (Fig. 2B).
Neural sensitivity (da) for each category can also be correlated

with expertise (Fig. 2D). Because increases in car responses are
found in both face-sensitive and nonsensitive voxels, this could
lead to increased car da and reduced face da. Car da increased
significantly in the single right (r) FFA ROI and in rFFA1, and
although it did not reach significance in rFFA2, a second ex-
periment (SI Text) found car da to increase with car expertise
in both rFFA subregions (Fig. 2D). We also found evidence for a
decrease in face da with car expertise, only reaching significance
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Fig. 1. (A) SR-fMRI Face-Object contrast displayed on the
inflated right hemisphere of a representative car expert. A 25-
mm2 rFFA ROI was defined around the peak of face-selectivity
(innermost white circle). The central black and outermost
white outlines depict the 100-mm2 and 300-mm2 ROIs, re-
spectively. (Inset) An enhanced view of the rFFA displayed on
the flattened cortical sheet, with the 25-mm2, 100-mm2, and
300-mm2 ROIs. The color map shows the HR voxels sorted as
a function of the maximal response in half the dataset. Av-
erage PSC to faces, animals, cars, and planes weighted over all
HR voxels that were more active for objects than scrambled
matrices. HR voxels were grouped by the category that eli-
cited the maximal response in half of the data, and PSC for
each category relative to scrambled matrices (B) or animals (C)
was plotted for the other half of the data. Error bars show
SEM. Percentages represent the average proportion for each
kind of voxel. (Expertise for cars was correlated with the
proportion of car-sensitive voxels in the 100-mm2 ROI: r =
0.52, P = 0.008 and in the 25-mm2 ROI: r = 0.513, P = 0.03).
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in rFFA2 in Exp. 1. In addition, we found reduced sensitivity
to animals as a function of car expertise in the single FFA ROI
(r = −0.646, P = 0.002) (Table S2), but not significantly in rFFA1
(r = −0.334, ns) or rFFA2 (r = −0.243, ns).
In contrast to rFFA, left (l) FFA had not shown expertise

effects at SR-fMRI in prior work with real-world experts (9–11).
An effect of car expertise was observed in the single lFFA ROI
only (but not FFA1/FFA2) for the response to cars–animals
in face-sensitive voxels (r = 0.596, P = 0.006) (Table S2). When
nonsensitive voxels were split into car and plane voxels, car
voxels also showed a significant effect of expertise in the single
lFFA ROI (r = 0.548, P = 0.01). We found an increase in sen-
sitivity (da) to cars with car expertise in the single lFFA ROI (r =
0.625, P = 0.003), and in lFFA2 (r = 0.555, P = 0.014). In both
the single lFFA ROI and lFFA2, car expertise was also associ-
ated with a decrease in da for animals (r = −0.548, P = 0.01 and
r = −0.669, P = 0.001, respectively) but not a significant decrease
for face da. In Exp. 2, car da increased with car expertise in
lFFA1 (r = 0.457, P = 0.049) and marginally so in lFFA2 (r =
0.454, P = 0.058), and face da was not correlated with car
expertise (r = 0.244, ns and r = −0.057, ns, respectively). The
specific definition of the FFA did not qualitatively change car
expertise effects, especially in the right hemisphere, although this
study had relatively little power to examine such differences.

Spatial Extent of Expertise Effects in the FFA. We assessed how car
expertise effects vary as a function of distance from the peak of
face selectivity in the FFA. This assessment could only be

performed on the peak FFA, and not for FFA1/FFA2, because
several subjects did not have two clear peaks (Fig. 1A). Moreover,
to define ROIs of increasing sizes following the activation land-
scape of face responses, we were limited to subjects with a large
FFA (only 12 had a 300-mm2 rFFA). Concentric ROIs centered
on the localizer peak revealed that expertise effects were centered
on and spatially limited to the rFFA (Fig. 3). Expertise effects
were significant in the center of the FFA (25 mm2) but absent in
a ring-ROI on average 8–10 mm from the peak of face selectivity
(300–200 mm2). This absence of expertise effects in the outer ring
was not because of reduced signal (SI Text). Similar results were
obtained in the lFFA (Fig. S4). These results illustrate the failure
of a conception of the FFA as an area within which face-sensitive
regions are interspersed among nonsensitive regions that are
functionally identical to nonsensitive areas outside the FFA.
Here, nonsensitive voxels 10 mm from the peak show no ex-
pertise effect, but those near the peak do, responding to objects of
expertise as highly face-sensitive voxels did.

Partial Correlations for Car and Plane Expertise Effects in Car Experts.
Although 13 of 25 subjects reported being car experts, only three
reported higher than average plane expertise. Nonetheless, be-
havioral performance for cars and planes was correlated (r = 0.65,
P = 0.0005). Thus, we calculated partial correlations between
expertise and neural responses to cars and planes, regressing out
behavioral performance for the other category (Tables S2 and
S3). Performance discriminating cars generally predicted FFA
responses to cars independently of performance discriminating

Fig. 2. (A) Correlation for behavioral Car d′with PSC to cars–animals within face, car and nonsensitive voxels (car and plane voxels from Fig. 1) sorted for their
maximal response in the other half of the data. Asterisks represent significant correlations at P < 0.05. (B) One exemplar scatterplot is displayed. (C) Scatterplots
show the correlation between behavioral car expertise and voxel selectivity (da) across subjects for faces or cars in the single 100-mm2 FFA, or in FFA1 and FFA2.
(D) Correlation as in C using data from 26 new subjects in Exp. 2. Pearson’s moment correlation and statistical significance are given (r, P) for each scatterplot.
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planes, and vice-versa. Thus, common variance was primarily not
what accounted for neural expertise effects.
Interestingly, although the majority of our subjects reported

no special interest in planes, plane expertise effects were similar
in magnitude to car expertise effects in right hemisphere ROIs
(Tables S2 and S3). This finding reveals that expertise effects
depend on performance rather than explicit interest. Although
car expertise effects were found in both hemispheres for cars,
they were only observed in the right hemisphere ROIs for planes
(Table S3). For example, the partial correlation between car
expertise (controlling for plane expertise) and the response to
cars–animals in car-responsive voxels within the FFA was no
different in the right and left hemispheres (t = 1.21, ns) (Table S2).
However, the partial correlation between plane expertise (con-
trolling for car expertise) and the response to plane–animals in
plane-responsive voxels within the FFA was larger in the right
than left hemisphere (t = 5.21, P < 0.001) (Table S3), with the
correlation in the left hemisphere not significant (r = 0.078). One
possible interpretation for this unexpected result is that because
performance for cars, but not planes, was associated with explicit
interest, the difference could be driven by greater semantic knowl-
edge for cars than planes. Future work with self-reported plane
experts or manipulating visual and semantic expertise could help
understand this pattern.

Spatial Extent of Expertise Effects Outside of the FFA. We also
mapped the areas that correlated with individual differences for
car discrimination at the group level. We smoothed the data from
the HR-runs (Methods) and overlaid the group-averaged map of
partial correlations of neural activity to cars (relative to animals)
with behavioral car d′ after regressing out plane d′ onto the
faces > objects SR-localizer map (Fig. 4). Although group-
average maps do not easily capture overlap in individuals
(e.g., see ref. 32), which is best assessed in our other analyses, we
found a focus of activity associated with car expertise overlapping
the FFA in both hemispheres (Fig. 4 and Fig. S5). Within the
field-of-view (FOV) of our HR-slices, and as in prior work (9,
14), other regions were engaged, such as areas in the precuneus,
inferior and right middle temporal gyrus, and STS (Table S4).
These are regions that were also more active for faces than objects
in our study (although group foci did not necessarily overlap,

especially in the left hemisphere), or for the hippocampus, in
prior work (e.g., see ref. 32). Despite the similarity of the pat-
terns for car expertise and face responses in the right hemi-
sphere, it should be kept in mind that the face localizer and the
correlation map were acquired at different resolutions and that
one represents a simple contrast but the other captures variance
in neural activity related to individual differences in a discrimi-
nation task. Defining the peak FFA based on a functional
localizer has proven robust to differences in task difficulty or
contrast categories for the FFA (33), but this appears less likely
in other regions. Future work comparing correlations with ex-
pertise for faces to that of objects in a sample with sufficient
variability in behavioral face performance (32) could better test
the similarity of these networks.

Discussion
Implications for the Interpretation of FFA Function. When expertise
is not taken into account, we replicate other HR-fMRI studies
(12, 16): within the classic FFA, there are regions strongly selec-
tive to faces, interspersed among regions that show little category
preference. These and related results in neurophysiological stud-
ies (13, 34) have led to the suggestion that the FFA is a highly
domain-specific area, specialized for faces, just as the medial tem-
poral area is specialized for motion (13), and that prior expertise
effects at SR-fMRI were a result of spatial blurring (14, 23).
However, when considering individual differences in expertise,

evidence of reliable object sensitivity was obtained in the FFA.
The response to cars or planes was higher relative to that for other
categories in subjects who were better at discriminating other
cars or planes outside the scanner. Although HR-fMRI cannot
determine whether the same neurons respond to faces and
objects of expertise, expertise effects overlap with face-selectivity
at a resolution that is finer than the clustering of face responses
in the human FFA or face patches in the monkey. These effects
are robust even within highly face-selective voxels in the center
of the FFA and are restricted to an area 200 mm2 (or 50 mm2 for

Fig. 3. Correlations in sorted voxels between PSC for cars–animals with
behavioral car expertise, in circular and concentric ring ROIs: 25 mm2,
100 mm2, 200–100 mm2, and 300–200 mm2. The horizontal line represents
the threshold for significance.

Fig. 4. Group-average map of partial correlations between PSC for car-
s–animals andbehavioral card′ regressing out planed′, overlaid on an individual
flattened right hemisphere. The black outline depicts the approximate borders
of the HR field of view. Red and green outlines represent regions activated by
faces > objects or objects > faces, respectively, from the group-average SR
localizer data at a threshold of P < 0.05 with false-discovery rate correction.
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lFFA) around the peak of face-selectivity. Therefore, even if
selectivity for faces and objects was found to depend on non-
overlapping populations of neurons, the tight spatial contiguity
of these responses would still suggest commonalities in function.
The results are consistent with the idea that, at least with regards
to specialization in the FG, faces are one of many domains of
expertise in which we have learned to individuate visually similar
objects, albeit one where expertise is ubiquitous. Whether early
acquisition of face expertise affords a special status to face
responses remains unclear.

Expertise or Attention? Could expertise recruit the FFA simply
because experts attend to objects of interest, thereby increasing
activity in most regions of extrastriate cortex, including non-
sensitive regions interspersed within face-sensitive regions in the
FFA (14)? We acknowledge that objects of expertise, including
faces, may attract attention and that attention influences visual
responses (35). However, attention should amplify existing pat-
terns of category selectivity (36), and so this account would
predict expertise effects at least as large in neighboring areas
that contain a larger proportion of object-responsive neurons
than in nonsensitive voxels within the FFA. Instead, expertise
effects in the FG were spatially limited to a small area centered
on the peak of face selectivity. Expertise effects in nonsensitive
voxels in the center of FFA were as strong as those in face-
sensitive voxels and dropped precipitously a short distance from
the peak. In addition, expertise effects for planes in the rFFA
were of the same magnitude as those for cars, dissociating the
role of behavioral performance, which appears to drive the FFA,
from that of explicit interest in a domain.

Experience or Preexisting Ability? To the extent that our results
are explained by learning, they are inconsistent with the idea that
learning effects are distributed throughout cortex with no re-
lation to face selectivity (22). Nonetheless, it is always possible
that in a correlational study of this sort, some of the effects
reflect experience-independent variance, whereby the integrity
of a network of areas that includes the FFA predicts performance
with objects and faces. Two aspects of our findings are more
consistent with an experience than an ability account. First, our
neural effects of expertise were domain-specific: not only were
they obtained for cars or planes relative to baselines of responses
to animals or all other categories in the calculation of da, but
partial correlations for car and plane expertise allow us to point
to neural effects related to domain-specific behavioral advantages,
rather than a domain general ability. Second, we found some
evidence of trade-offs between responses to objects of expertise
and responses to animals or faces in the FFA, consistent with
other work where learning in nonface domains competed with
face selectivity (1, 37).

Conclusion. Perceptual expertise as measured here likely occurs
in most people as they learn to individuate objects related to
professional activities or hobbies. Thus, most peoples’ FFA likely
contains several populations of neurons selective for objects of
expertise. Prior studies revealing only face-selective responses in
the FFA (12) or face patches (13) relied on object categories for
which subjects likely had little experience, and as we show here,
even when experts are included in a sample, selectivity for objects
is not easily revealed until individual differences are taken into
account. Thus, we suggest that claims of strong domain-specific
selectivity should be made with more caution.
Our results were generally similar when a single FFA ROI was

separated into a more anterior and a more posterior part, with
little consistent evidence of a difference between these two areas
[indeed, mean Face da was comparable in the three definitions:
single = 0.36 (0.05); FFA1 = 0.30 (0.04); FFA2 = 0.35 (0.05)].
This finding is consistent with the current lack of evidence for

a clear functional separation between these two subregions of
the FFA (30), but the distinction is relatively unique and our
understanding of functional maps in the visual system is rapidly
changing (38). One implication of our results in the context of
such rapid progress is that understanding the principles of or-
ganization of ventral extrastriate cortex may be hampered by
conceptions of areas anchored in the domains to which they
maximally respond, because this framework offers no expla-
nation for why a car or a plane recruits “object areas” in one
individual but “face areas” in another. Uncovering what
mechanisms account for why an area is a focus of specializa-
tion for domains as visually and semantically different as faces
and vehicles, or birds (9, 11), chess boards (7), or radiographs
(10), is a very different endeavor from studying the role of the
same area in face recognition. Any theory that succeeds in
only one of these two goals will be severely limited.

Methods
Subjects. Twenty-five healthy right-handed adults (eight females), aged
22–34 y, participated for monetary compensation. Informed written consent
was obtained from each subject in accordance with guidelines of the in-
stitutional review board of Vanderbilt University and Vanderbilt University
Medical Center. All subjects had normal or corrected-to-normal vision.

Scanning. Imaging was performed on a Philips Medical Systems 7-Tesla (7T)
human magnetic resonance scanner at the Institute of Imaging Science at
Vanderbilt University Medical Center (Nashville, TN).
HR anatomical scan. HR T1-weighted anatomical volumes were acquired using
a 3D MP-RAGE–like acquisition sequence (FOV = 256 mm, TE = 1.79 ms, TR =
3.68 ms, matrix size = 256 × 256) to obtain 172 slices of 1-mm3 isotropic
voxels. HR anatomical images were used to align sets of functional data,
for volume rendering (including gray matter–white matter segmentation
for the purposes of inflating and flattening of the cortical surface) and for
visualization of functional data.
SR functional scan. The experimental sequence began with a single-run SR
functional localizer for real-time localization of the FFA and optimal posi-
tioning of HR slices. We then acquired 30 SR slices (2.2 × 2.2 × 2.5 mm)
oriented in the coronal plane. The blood-oxygen level-dependent–based
signals were collected using a fast T2*-sensitive radiofrequency-spoiled
3D PRESTO sequence (FOV = 211.2 mm, TE = 22 ms, TR = 21.93 ms, volume
repetition time = 2,500 ms, flip angle = 62°, matrix size = 96 × 96). For the
final five subjects we achieved full-brain coverage (40 slices; 2.3 × 2.3 ×
2.5 mm) in the axial/transverse plane (volume repetition time = 2,000 ms,
all other scanning parameters remained the same). Slice prescriptions that
incorporated face-responsive voxels (localized on an individual basis using
real-time linear regression analysis during the SR functional scan) and also
included the FG were selected for proceeding HR runs.
HR functional scans. Immediately following the SR scan, we acquired 24 HR
coronal slices. We used a radio-frequency–spoiled 3D FFE acquisition se-
quence with SENSE (FOV = 160 mm, TE = 21 ms, TR = 32.26 ms, volume
repetition time = 4,000 ms, flip angle = 45°, matrix size = 128 × 128) to
obtain 1.25-mm3 isotropic voxels.

fMRI Display, Stimuli, and Task. Images were presented on an Apple computer
usingMatlab (MathWorks) with Psychophysics Toolbox extension.We used 72
grayscale images (36 faces, 36 objects) to localize face- and object-selective
regions in theSR run. Subsequent runsusedanother110grayscale face images,
and the same number of modern car, animal, and plane images (Fig. S1).

There were seven functional scans: one SR localizer run followed by six HR
experimental runs. All runs used a blocked design using a one-back detection
task with subjects indicating immediate repetition of identical images. Each
image differed in size relative to the preceding image and every block
included one-to-two repeats.
SR Localizer run. The localizer scan used 20 blocks of alternating faces and
common objects (20 images shown for 1 s) with a 10-s fixation at the be-
ginning and end. (In response to scanner upgrades, we adjusted the localizer
in the final five subjects to include 15 20-s blocks with 0-s fixation at the
beginning and end of the run.) Average accuracy was 0.97 (range 0.69–1.0).
HR experimental runs. After real-time alignment of the HR slices based on SR
data, subjects completed six experimental runs with 20 20-s blocks (four each
of faces, animals, cars, planes, and scrambled, with 20 images sequentially
presented for 1 s), with 8-s fixation at the beginning and end. Within a run of
20 blocks, each category occurred once every five blocks, and two blocks of
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the same category never occurred in immediate succession. Average accuracy
was 0.97 (range 0.81–0.99). Performance in the scanner was not related to
behavioral expertise (P > 0.12).

Behavioral Expertise Measure and Stimuli. A behavioral task outside the
scanner used a separate set of grayscale images of 56 cars and planes. Subjects
performed 12 blocks of 28 sequential matching trials per category. On each
trial, the first stimulus appeared for 1,000 ms followed by a 500-ms mask.
A second stimulus appeared and remained visible until a same or different
response or 5,000 ms. Subjects judged whether the two images showed cars
or planes from the same make and model regardless of year. An expertise
sensitivity score was calculated for cars (car d′, range 0.52–3.17) and planes
(plane d′, range 0.80–3.13) for each subject.

Data Analysis. The HR T1-weighted anatomical scan was used to create a 3D
brain for which translational and rotational transformations ensured a center
on the anterior commissure and alignment with the anterior commissure–
posterior commissure plane. For post hoc analyses only, the anatomical brain
was normalized in Talairach space.

Functional data were analyzed using Brain Voyager (www.brainvoyager.
com), and in-house Matlab scripts (www.themathworks.com). Preprocessing
included 3D motion correction and temporal filtering (high-pass criterion
of 2.5 cycles per run) with linear trend removal. Data from HR functional
runs were interpolated from 1.25-mm isotropic voxels to a resolution of
1 mm isotropic using sinc interpolation. No spatial smoothing was applied at
any resolution. We used standard (GLM) analyses to compute the correlation
between predictor variables and actual neural activation, yielding voxel-
by-voxel activation maps for each condition.
ROI selection. ROIs were defined in 2D, except where specified. Automatic
and manual segmentation were used to disconnect the hemispheres and
identify the gray matter–white matter boundary. ROIs were defined using
the face-object contrast in the SR localizer run that responded more to
faces than objects (FFA) or the reverse (medFG). First, the center of the ROI
was defined, then rings on the cortical surface were defined concentrically
around this peak to achieve a fixed area (Table S1). Analyses were performed
on 1-mm3 voxels of a given ROI that were activated significantly more to
objects relative to the scrambled baseline (P < 0.01). Only SR localizer data
were transferred to a surface format to define ROIs and all HR-analyses were

performed on volume data that were not transferred into surface format,
avoiding blurring.
Response amplitudes. For each voxel, a percent signal-change (PSC) estimate
was computed for each category using scrambled blocks as the baseline.
Response amplitudes were computed in two steps. First, PSC values from
the odd-numbered runs were used to determine the category preference of
each voxel based on the category evoking the maximum response. Second,
PSC values from the even-numbered runs were used to plot the average
response amplitude for all four categories within each type of voxel. The
reverse computations were performed using data from even-numbered runs
to sort voxels and data from odd-numbered runs to calculate response
amplitudes and the two computations were averaged.
Selectivity of response. We quantified selectivity on a voxel-by-voxel basis
using the signal detection theory measure da, with cross validation (29, 31).
Selectivity was computed as,

da =
�
μpreferred − μnonpreferred

��
√
��
σ2preferred + σ2nonpreferred

��
2
�
; [1]

where μ and σ represent the mean and SD, respectively, of responses,
computed relative to a scrambled baseline (12): e.g.,

μpreferred =
��
μpreferred − μscrambled

��
μscrambled

�
×100:

The preferred category for each voxel was the one that evoked the
maximum response during odd-numbered runs, and da was calculated rel-
ative to this category using data from the even-numbered runs. These results
were then averaged with results from the reverse computation.
Group-average maps. We computed group-average brain maps to further
compare the network of areas showing car expertise effects with the network of
face-sensitive areas identified at the group level in the functional localizer. Data
from the HR-runs was smoothed with a Gaussian kernel (FWHM = 6 mm) and
transformed into Talairach space to combine hemispheres across individuals.
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